Combining Interaction and Content for Feedback-Based Ranking
نویسندگان
چکیده
The paper is concerned with the design and the evaluation of the combination of user interaction and informative content features for implicit and pseudo feedback-based document re-ranking. The features are observed during the visit of the top-ranked documents returned in response to a query. Experiments on a TREC Web test collection have been carried out and the experimental results are illustrated. We report that the effectiveness of the combination of user interaction for implicit feedback depends on whether document re-ranking is on a single-user or a user-group basis. Moreover, the adoption of document re-ranking on a user-group basis can improve pseudo-relevance feedback by providing more effective document for expanding queries.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملA New Hybrid Method for Web Pages Ranking in Search Engines
There are many algorithms for optimizing the search engine results, ranking takes place according to one or more parameters such as; Backward Links, Forward Links, Content, click through rate and etc. The quality and performance of these algorithms depend on the listed parameters. The ranking is one of the most important components of the search engine that represents the degree of the vitality...
متن کاملHighlight Ranking for Broadcast Tennis Video Based on Multi-modality Analysis and Relevance Feedback
Most of existing work on sports video analysis concentrates on highlight extraction. Few efforts devoted to the important issue as how to organize the extracted highlights which is adapt for the user preference. In this paper, we propose a novel approach to rank the highlights extracted from broadcast tennis video based on multi-modality analysis and relevance feedback. Firstly, visual and audi...
متن کامل